Samsung RF265 and RS267 models side-by-side refrigerator error codes:


Reference Model: RS265TD and RS267TD


These error code explanations can help you diagnose a problem with Samsung RS265TD and RS267TD side-by-side refrigerators.

This type of refrigerator displays an error code on the freezer and refrigerator temperature digital displays when the control detects a component failure. The freezer temperature display shows the number designation of the code and the refrigerator temperature display shows E.

When the control detects a communication error between the control panel and the electronic control board, the freezer temperature display shows Er and the refrigerator display shows Pc.

Refer to the chart below to find the cause of the error code and get troubleshooting advice to clear the code.

The refrigerator may work properly even though the control displays an error code. A power outage can sometimes cause the control to detect a problem and display a code. The control may continue to display the code even if the component failure no longer exists. To reset the display so it shows freezer and refrigerator temperatures, press and hold the Energy Saver and Lighting buttons simultaneously for 8 seconds. The error code will disappear and the display will resume normal operations.

If the code reappears on the display, follow the troubleshooting steps in the chart below to fix the problem being detected and clear the code.

If you cleared an error code from the display and encounter cooling problems in the refrigerator, the component problem that caused the code likely still exists even though you cleared the code. You can redisplay a detected error code by pressing and holding the Energy Saver and Lighting buttons simultaneously for 8 seconds. The display will chime and display the code for 30 seconds. The display will then revert back to showing freezer and refrigerator temperatures.



Code Meaning Possible Cause Possible Parts
1 E Freezer temperature sensor failure Unplug the refrigerator and check the wire harness connection on the freezer temperature sensor. Reconnect the wire harness if it's loose. If the wire harness connection is okay, check sensor resistance using a multimeter. The meter should measure about 5,600 ohms if the sensor temperature is 72 degrees (room temperature), 13,290 ohms at 32 degrees and 29,000 ohms at 0 degrees. Replace the temperature sensor if resistance is off by more than 10 percent. If sensor resistance is okay, reinstall the temperature sensor and check the sensor's wire harness connections to the electronic control board (gray wire on pin 4 and yellow wire on pin 5 of CN40). Reconnect the wires if loose. If the wire connections are okay, disconnect the sensor wires from the electronic control board and measure resistance through the sensor's wires. The meter should read the same resistance as for the temperature sensor. If the meter measures correct sensor resistance through the wires, you'll likely need to replace the electronic control board because it's not accurately detecting sensor resistance. Find and repair the sensor wiring failure if the meter measures infinite resistance through the sensor wires Freezer temperature sensor, Electronic control board
2 E Refrigerator compartment temperature sensor failure Unplug the refrigerator and check the wire harness connection on the refrigerator compartment temperature sensor. Reconnect the wire harness if it's loose. If the wire harness connection is okay, check sensor resistance using a multimeter. The meter should measure about 5,600 ohms if the sensor temperature is 72 degrees (room temperature), 13,290 ohms at 32 degrees and 11,700 ohms at 37 degrees. Replace the temperature sensor if resistance is off by more than 10 percent. If sensor resistance is okay, reinstall the temperature sensor and check the sensor's wire harness connections to the electronic control board (black wire and gray wire on CN40). Reconnect the wires if loose. If the wire connections are okay, disconnect the sensor wires from the electronic control board and measure resistance through the sensor's wires. The meter should read the same resistance as for the temperature sensor. If the meter measures correct sensor resistance through the wires, you'll likely need to replace the electronic control board because it's not accurately detecting sensor resistance. Find and repair the sensor wiring failure if the meter measures infinite resistance through the sensor wires Refrigerator compartment temperature sensor, Electronic control board
4 E Freezer evaporator defrost temperature sensor failure Unplug the refrigerator and check the wire harness connection on the freezer evaporator defrost temperature sensor. Reconnect the wire harness if it's loose. If the wire harness connection is okay, check sensor resistance using a multimeter. The meter should measure about 5,600 ohms if the sensor temperature is 72 degrees (room temperature), 13,290 ohms at 32 degrees and 29,000 ohms at 0 degrees. Replace the temperature sensor if resistance is off by more than 10 percent. If sensor resistance is okay, reinstall the temperature sensor and check the sensor's wire harness connections to the electronic control board (blue wire and gray wire on CN40). Reconnect the wires if loose. If the wire connections are okay, disconnect the sensor wires from the electronic control board and measure resistance through the sensor's wires. The meter should read the same resistance as for the temperature sensor. If the meter measures correct sensor resistance through the wires, you'll likely need to replace the electronic control board because it's not accurately detecting sensor resistance. Find and repair the sensor wiring failure if the meter measures infinite resistance through the sensor wires Freezer evaporator defrost temperature sensor, Electronic control board
5 E Refrigerator evaporator defrost temperature sensor failure Unplug the refrigerator and check the wire harness connection on the refrigerator evaporator defrost temperature sensor. Reconnect the refrigerator evaporator defrost temperature sensor wire harness if it's loose. If the wire harness connection is okay, check sensor resistance using a multimeter. The meter should measure about 5,600 ohms if the sensor temperature is 72 degrees (room temperature) and 13,290 ohms at 32 degrees. Replace the temperature sensor if resistance is off by more than 10 percent. If sensor resistance is okay, reinstall the temperature sensor and check the sensor's wire harness connections to the electronic control board (purple wire and gray wire on CN40). Reconnect the wires if loose. If the wire connections are okay, disconnect the sensor wires from the electronic control board and measure resistance through the sensor's wires. The meter should read the same resistance as for the temperature sensor. If the meter measures correct sensor resistance through the wires, you'll likely need to replace the electronic control board because it's not accurately detecting sensor resistance. Find and repair the sensor wiring failure if the meter measures infinite resistance through the sensor wires Refrigerator evaporator defrost temperature sensor, Electronic control board
6 E Ambient temperature sensor failure Unplug the refrigerator and check the wire harness connection on the ambient temperature sensor. Reconnect the wire harness if it's loose. If the wire harness connection is okay, check sensor resistance using a multimeter. The meter should measure about 5,600 ohms if the sensor temperature is 72 degrees (room temperature). Replace the temperature sensor if resistance is off by more than 10 percent. If sensor resistance is okay, reinstall the temperature sensor and check the sensor's wire harness connections to the electronic control board (yellow wires on pins 1 and 2 of CN40). Reconnect the wires if loose. If the wire connections are okay, disconnect the sensor wires from the electronic control board and measure resistance through the sensor's wires. The meter should read the same resistance as for the temperature sensor. If the meter measures correct sensor resistance through the wires, you'll likely need to replace the electronic control board because it's not accurately detecting sensor resistance. Find and repair the sensor wiring failure if the meter measures infinite resistance through the sensor wires Ambient temperature sensor, Electronic control board
21 E Freezer evaporator fan failure Unplug the refrigerator and check the wire harness connections on the freezer evaporator fan. Reconnect any loose wires. Check for evaporator frost and ice buildup that can block fan blade rotation. Defrost any ice buildup from the evaporator. Check the freezer evaporator fan wiring connections (yellow, gray and black wires) on the CN75 electronic control board connector. Reconnect any loose wires. If the wiring connections are okay, replace the freezer evaporator fan Freezer evaporator fan
22 E Refrigerator evaporator fan failure Unplug the refrigerator and check the wire harness connections on the refrigerator evaporator fan. Reconnect any loose wires. Check for evaporator frost and ice buildup that can block fan blade rotation. Defrost any ice buildup from the evaporator. Check the refrigerator evaporator fan wiring connections (orange, gray and brown wires) on the CN75 electronic control board connector. Reconnect any loose wires. If the wiring connections are okay, replace the refrigerator evaporator fan Refrigerator evaporator fan
23 E Condenser fan failure Unplug the refrigerator and check the wire harness connections on the condenser fan. Reconnect any loose wires. Check for and remove an obstruction that could block the condenser fan blade from spinning. Check the condenser fan wiring connections (sky blue, gray and red wires) on the CN75 electronic control board connector. Reconnect any loose wires. If the wiring connections are okay, replace the refrigerator condenser fan Condenser fan
24 E Freezer evaporator defrost system failure Unplug the refrigerator and remove the electronic control board cover. Using a multimeter, check the resistance through the brown wire and the orange wire on the CN70 control board connector. If the meter measures about 66 ohms, then the defrost heater, bi-metal thermostat and thermal fuse are good. Check the freezer evaporator defrost temperature sensor as described in troubleshooting for the 4 E error code. Replace the freezer evaporator defrost temperature sensor if it's bad. If the sensor is good, then you may need to replace the electronic control board because the board isn't sending electric current to the defrost heater. If the meter measures infinite resistance through the brown and orange wires on CN70, then a wiring break or a failed component in the defrost circuit is preventing the defrost system from heating. First, check resistance through the defrost heater. The meter should measure about 66 ohms through the defrost heater. Replace the defrost heater if the meter measures infinite resistance through the defrost heater. If the defrost heater is good, check the resistance through the defrost bi-metal thermostat. The meter should measure near 0 ohms of resistance through the defrost bi-metal thermostat. Replace the bi-metal thermostat if the meter measures infinite resistance. If the defrost heater and bi-metal thermostat are both okay, check resistance through the thermal fuse. The meter should measure near 0 ohms of resistance through the thermal fuse. Replace the thermal fuse if the meter measure infinite resistance. If the defrost heater, bi-metal thermostat and thermal fuse are all good, find and repair the wiring break in the defrost circuit that's preventing the defrost heater from getting electrical current through the defrost system circuit and causing the infinite resistance reading through the brown and orange wires on CN70 Freezer defrost heater, Freezer defrost bi-metal thermostat, Freezer evaporator defrost temperature sensor, Electronic control board
25 E Refrigerator evaporator defrost system failure Unplug the refrigerator and remove the electronic control board cover. Using a multimeter, check the resistance through the white wire and the orange wire on the CN70 control board connector. If the meter measures about 103 ohms, then the defrost heater, bi-metal thermostat and thermal fuse are good. Check the freezer evaporator defrost temperature sensor as described in troubleshooting for the 4 E error code. Replace the sensor if it's bad. If the freezer evaporator defrost temperature sensor is good, then you may need to replace the electronic control board because the board isn't sending electric current to the defrost heater. If the meter measures infinite resistance through the white and orange wires on CN70, then a wiring break or a failed component in the defrost circuit is preventing the defrost system from heating. First, check resistance through the defrost heater. The meter should measure about 103 ohms through the defrost heater. Replace the defrost heater if the meter measures infinite resistance through the defrost heater. If the defrost heater is good, check the resistance through the defrost bi-metal thermostat. The meter should measure near 0 ohms of resistance through the defrost bi-metal thermostat. Replace the bi-metal thermostat if the meter measures infinite resistance. If the defrost heater and bi-metal thermostat are both okay, check resistance through the thermal fuse. The meter should measure near 0 ohms of resistance through the thermal fuse. Replace the thermal fuse if the meter measure infinite resistance. If the defrost heater, bi-metal thermostat and thermal fuse are all good, find and repair the wiring break in the defrost circuit that's preventing the defrost heater from getting electrical current through the defrost system circuit and causing the infinite resistance reading through the white and orange wires on CN70 Refrigerator defrost heater, Refrigerator defrost bi-metal thermostat, Refrigerator evaporator defrost temperature sensor, Electronic control board
26 E Ice maker failure Unplug the refrigerator and check the ice maker wire harness connection. Reconnect the wire harness plug if it's loose. If the wire harness connection is okay, check the ice maker wire harness connections on the electronic control board (CN90 connector). Reconnect the CN90 connector if it's loose. If the CN90 connector is plugged into the control board securely, replace the ice maker Ice maker
41 E or Pc Er Communication error between the control panel and electronic control board Unplug the refrigerator and check the wire harness connections between the control panel and the electronic control board. Reconnect any loose wires. If wiring connections are sound, you'll likely need to replace the electronic control board. If the problem continues, replace the control panel Electronic control board, Control panel
81 E Compressor failed to start Unplug the refrigerator and check the wire harness connections between the inverter board and compressor. Reconnect any loose wires and repair any damaged wires. If wiring connections are okay, call a service technician to diagnose and repair the compressor failure. The technician will need to conduct live voltage checks to determine the cause of the problem To be determined
83 E Compressor is drawing abnormal current Unplug the refrigerator and check the wire harness connections between the refrigerator inverter board and compressor. Reconnect any loose wires and repair any damaged wires. If wiring connections are okay, call a service technician to diagnose and attempt to repair the failure. The technician will need to conduct live voltage and current checks to determine the cause of the problem To be determined, compressor
84 E Compressor locked Call a service technician to diagnose and repair this failure. The technician will likely need to replace the compressor. That repair requires the recovery and recharge of refrigerant Compressor
85 E Voltage supply to the compressor is too low Call a service technician to diagnose and repair the failure. The technician will need to conduct live voltage checks to determine the cause of the problem To be determined
86 E Voltage supply to the compressor is too high Call a service technician to diagnose and repair the failure. The technician will need to conduct live voltage checks to determine the cause of the problem To be determined


Samsung Refrigerator Repair and Maintenance Parts



Related Links

  1. Refrigerator door mullion spring, Keeps the mullion flap against the door when the door is opened and shut
  2. Samsung Refrigerator Water Filter MWFP
  3. Samsung Refrigerator Water Filter DA29-00020B
  4. Samsung Refrigerator Light Bulb 8009